-
제임스 웹 우주망원경 - 최초의 이미지. 2022년 7월 12일 공개.인터넷시대와 4차산업 2023. 8. 5. 11:58반응형
제임스 웹 우주 망원경( James Webb Space Telescope, JWST)은 적외선 천문 관측을 주목적으로 하는 우주 망원경이다.
현존하는 광학 우주 망원경 중에서 규모가 가장 크며, 뛰어난 적외선 분해능과 감도 덕분에 허블 우주 망원경조차 관측하기 어려울 정도로 멀고 어두운 천체들을 관측할 수 있다.
이를 통해 최초의 별과 최초의 은하가 형성되는 모습을 포착하는 등 천문학과 우주론 마당에서 광범위한 연구가 가능할 것으로 기대되고 있다.
제임스 웹의 설계와 개발은 미국항공우주국(NASA)이 유럽우주국(ESA)과 캐나다우주국(CSA)과 협력하여 이끌었다.망원경의 개발은 메릴랜드에 소재하는 NASA의 고더드우주비행센터(GSFC)가 맡았으며, 망원경의 운용은 볼티모어 존스홉킨스대학교 홈우드캠퍼스에 소재하는 우주망원경과학연구소가 하고 있다.
사업에 참여한 주요 기업으로는 노스롭 그루먼이 있다.
망원경의 명칭은 1961년부터 1968년까지 NASA 국장을 역임하며 머큐리, 제미니, 아폴로 계획을 추진한 제임스 에드윈 웨브의 이름에서 따온 것이다.
제임스 웹 우주 망원경은 2021년 12월 25일 프랑스령 기아나 쿠루에서 아리안 5 로켓에 실려 발사된 후, 2022년 1월에 태양-지구 L2 라그랑주점에 안착하였다.2022년 7월 11일에는 조 바이든 미국 대통령이 참석한 기자 회견에서 제임스 웹의 최초 공식 이미지가 공개되었다
제임스 웹 망원경의 주거울은 열여덟 장의 작은 거울 세그먼트로 구성되어 있으며, 거울 세그먼트는 금으로 코팅된 베릴륨 재질이다.세그먼트가 하나로 모인 주거울은 직경이 6.5미터에 달하여 2.4미터의 허블 주거울보다도 크다.
이러한 주거울의 집광 면적은 25제곱미터로, 허블의 집광 면적의 여섯 배에 달한다.
그러나 근자외선과 가시광선(0.1~0.8 μm), 근적외선(0.8~2.5 μm) 스펙트럼을 관측하는 허블과는 달리, 제임스 웹은 파장이 긴 가시광선(적색)에서 중적외선(0.6~28.3 μm)까지를 관측한다.
제임스 웹은 망원경 자체가 발산하는 적외선이 외부의 빛을 받아들이는 데 방해가 되지 않도록 50 K (−223.2 °C; −369.7 °F)보다 낮은 극저온 상태를 유지해야 한다.지구 근처에서 제임스 웹을 가열할 수 있는 열원으로는 태양과 지구와 달이 있는데, 제임스 웹은 차양막이 이 셋을 동시에 가릴 수 있도록 지구에서 150만 킬로미터가량 떨어진 태양-지구 L2 라그랑주점 근처에서 태양을 도는 궤도에 위치한다.
1996년, 최초 구상 단계에서 제임스 웹 우주 망원경은 차세대 우주 망원경(Next Generation Space Telescope, NGST)이라는 명칭이 주어졌었다. 1999년에는 10억 달러의 예산과 2007년 발사를 목표로 두 가지 컨셉의 연구가 진행되었다.하지만 초창기 사업은 막대한 비용 증가와 개발 지연으로 난항을 겪었고, 2005년에 이르러서 지금 형식의 대대적인 재설계를 거친 후 2016년에야 100억 달러에 이르는 총비용으로 망원경을 완성하였다.
이 때문에 언론과 과학자와 공학자들은 망원경의 복잡성과 발사의 큰 위험 부담에 관해서 주목하고 우려한 바 있었다.
제임스 웹 우주 망원경의 중량은 허블 우주 망원경 중량의 절반밖에 되지 않는다.금으로 코팅된 베릴륨 재질의 주거울은 직경이 6.5 m (21 ft)이며, 작은 육각형 거울 열여덟 장으로 구성되어 있다.
이 거울의 총면적은 26.3 m2 (283 ft2)이지만, 0.9 m2 (9.7 ft2)가 부거울과 부거울 지지대에 가려져 있기 때문에 집광부의 총면적은 25.4 m2 (273 ft2)이다.
이는 직경 2.4미터인 허블 주경의 집광 면적 4.0 m2 (43 ft2)보다 여섯 배 이상 크다.
제임스 웹의 거울이 금으로 코팅된 것은 적외선 반사율을 높이기 위함이며, 금 코팅은 내구성 때문에 얇은 유리막으로 덮여있다.
제임스 웹 망원경은 근적외선 관측을 주목적으로 설계되었으나, 사용하는 관측 장비에 따라 주황색에서 빨간색의 가시광선도 관측할 수 있으며, 마찬가지로 중적외선 영역도 가능하다.허블이 관측할 수 있는 것보다 100분의 1 정도로 어두운 천체까지 관측할 수 있으며, 적색편이 z≈20까지 거슬러 올라가는 우주 역사에서 이른 시대(빅뱅 이후 1억 8천만 년 무렵의 우주시)의 천체들도 관측할 수 있다.
비교컨대, 최초의 별이 z≈30에서 z≈20(1억 년에서 1억 8천만 년 사이의 우주시) 무렵에 탄생하였고, 최초의 은하가 z≈15(2억 7천만 년 무렵의 우주시) 무렵에 탄생했으리라 여겨지지만, 허블은 z≈11.1 무렵(4억 년의 우주시에 존재하는 은하 GN-z11)의 극초기 재이온화 시대 너머의 과거를 볼 수 없다.
제임스 웹 망원경은 다음과 같은 이유에 의해서 근적외선과 중적외선에서 기능하는 것으로 설계되었다.
적색편이가 큰 (즉, 거리가 멀고 시간적으로 극초기 우주의) 천체는 가시광선 방출이 적외선으로 이동하기 때문에 오늘날에 그러한 빛을 관측하려면 근적외선 천문학이 필수다.적외선은 가시광선보다 먼지 구름을 쉽게 통과한다.
먼지 원반이나 행성 같은 저온 천체는 적외선을 가장 많이 방출한다.
이러한 적외선 대역은 지상 망원경이나 허블과 같이 현존하는 우주 망원경으로는 연구하기 어렵다.
가시광선을 포함해서 전자기 복사의 파장별로 지구 대기가 흡수하는 정도(불투명도)를 보여주는 그림.
지상 망원경은 그 위치 때문에 지표면을 덮는 대기를 꿰뚫어 볼 수밖에 없는데, 지구 대기는 다양한 적외선 대역에서 불투명하다는 문제점이 있다.심지어 대기가 투명한 장소일지라도 적외선 천문학의 주요 표적에서 관측하기 쉬운 화학 성분이 물이나 이산화탄소, 메탄처럼 지구 대기에도 풍부하게 존재하는 화합물이기 때문에 분석이 매우 까다롭다.
허블과 같이 현존하는 우주 망원경은 거울이 적외선 관측이 요구하는 온도보다 뜨겁기 때문에 이러한 대역에서 관측이 불가능하다.
예컨대 허블의 주거울은 약 15 °C (59 °F)로 유지되는데, 이 온도에서 망원경은 적외선을 강하게 방출한다.
제임스 웹 망원경은 태양에 대해 85˚ 이상의 회피각에서 초당 0.03각초보다 느린 각속도로 움직이는 태양계 천체를 관측할 수 있기도 하다.이러한 천체로는 화성, 목성, 토성, 천왕성, 해왕성, 명왕성, 앞에서 열거한 천체들의 위성, 화성 궤도 너머의 혜성, 소행성이 있다.
제임스 웹은 알려진 카이퍼대 천체를 모두 관측할 수 있을 정도의 적외선 감도를 가지고 있으며, 초신성이나 감마선 폭발처럼 한시적이고 관측 계획에 없던 표적도 일정 변경을 통해 48시간 이내에 관측할 수 있는 유연한 관측 체계도 갖추고 있다.
제임스 웹 우주 망원경은 태양에 대한 지구 궤도 너머 약 1,500,000 km 떨어진 태양-지구 L2 라그랑주점을 중심으로 도는 헤일로 궤도에서 운용된다.
망원경이 공전하면서 실제 위치는 L2 점에 대해 약 250,000 km에서 832,000 km 거리까지 변화하지만, 지구와 달의 그림자에 들어가는 일은 없다.
태양과 지구의 L2 점 근처에 있는 물체는 지구와 같은 속도로 태양을 공전할 수 있기 때문에 망원경이 태양과 지구와 달에 대해 거리를 거의 일정하게 유지할 수 있으며, 차양막과 우주선 본체를 일정한 각도로 유지할 수 있다.
제임스 웹 망원경은 지구와 달의 그림자를 피하기 위해서 폭넓은 궤도를 가지기 때문에 태양을 향하는 면에서 꾸준히 태양광을 받으며 전력을 공급하고 지구와 교신하면서도 차양막을 통해 태양과 지구와 달에서 관측 장비로 오는 열과 빛을 차단하고, 지구와 달의 그림자에 들어갔을 때 우주선에 생길 수 있는 미세한 온도 변화를 피할 수 있다.
이러한 배열과 자세를 통해 우주선의 온도를 희미한 적외선 관측에 필요한 50K 아래로 일정하게 유지할 수 있다.
제임스 웹 우주 망원경은 다음의 네 가지 사항을 핵심 목표로 두고 있다.
* 빅뱅 이후 우주에 나타난 최초의 별과 은하에서 오는 빛 탐색
* 은하의 형성과 진화 연구
* 별 탄생과 행성 형성 이해
* 행성계와 생물 기원 연구
이러한 목표는 가시광선 스펙트럼보다 근적외선 스펙트럼을 관측함으로써 더 효율적으로 달성할 수 있다.
이러한 이유로 제임스 웹의 관측 장비는 허블 망원경처럼 가시광선이나 자외선을 측정하지 않으며, 적외선 천문학을 수행하기 위한 능력만 극대화되었다.
제임스 웹은 0.6~28 μm 파장(주황색 가시광선에서 100 K (−173 °C; −280 °F) 물체가 내는 장파 적외선 복사에 대응)에서 기능한다.
제임스 웹 망원경은 2015년 발견된 KIC 8462852(영어판)처럼 특이한 광도 곡선 맵시를 보여주는 천체에 관하여 물리학적인 정보를 얻을 수 있는 능력을 갖추고 있을 것이다.
또한, 제임스 웹이 외계행성 대기에서 메탄의 유무를 파악할 수 있기 때문에 천문학자들은 이를 통해 메탄을 생명체가 존재하는 징후로 여길 수 있는지 여부를 판단할 수 있을 것이다.
제임스 웹은 정확히 L2 점에 있지 않으며, 그 주변을 헤일로 궤도로 공전한다.
용골자리 성운을 바라본 허블 우주 망원경의 두 가지 시각을 비교한 이미지. 위는 가시광선 이미지이고 아래는 적외선 이미지이다. 적외선에서 훨씬 많은 별들이 보인다.
제임스 웹 우주 망원경은 태양에서 지구 궤도보다 1,500,000 km (930,000 mi) 더 멀리 있는 태양-지구계 제2 라그랑주점(L2) 주변을 공전한다.
이는 지구에서 달 궤도보다 네 배 정도 더 먼 거리다.
일반적으로 지구보다 멀리서 태양을 도는 물체는 한 번 공전하는 데 1년보다 더 오랜 시간이 걸리지만, L2 점 주변에서는 지구 중력과 태양 중력의 합력 덕분에 우주선이 지구와 같은 주기로 태양을 공전할 수 있다.
우주선이 지구 주변에 머물기 때문에 먼 궤도보다 데이터 전송률이 크다는 장점도 있다.
제임스 웹 망원경은 태양-지구 L2 점 주변을 황도에 대해 기울어진 헤일로 궤도로 맴돌며, L2 점에 대해 250,000 km (160,000 mi)에서 832,000 km (517,000 mi) 거리를 유지하면서 반년 주기로 회전한다.
L2가 중력이 작용하지 않는 평형점이기 때문에 헤일로 궤도는 일반적인 의미의 궤도가 아니다.
우주선은 실제로 태양을 공전하고 있으며, 헤일로 궤도는 우주선이 L2 점 부근에 표류하도록 하는 우주 비행으로 여길 수 있다.
이에 따라 93 m/s의 총 Δv 비용(영어판)에서 연간 2.5m/s 정도의 궤도 수정이 필요하다.
망원경의 추진 장치는 두 쌍의 스러스터로 구성되어 있다.
스러스터가 제임스 웹의 태양 지향면에만 있기 때문에 모든 궤도 수정 작업은 망원경을 준안정적인 L2 점 너머로 밀어내어 원위치로 되돌릴 수 없게 되는 불상사를 피하도록 요구 추력이 조금 언더슛 되도록 설계되었다.
제임스 웹 우주 망원경의 장치 통합 및 시험 프로젝트 책임 과학자 랜디 킴블(영어: Randy Kimble)은 제임스 웹의 정밀한 스테이션 키핑을 "산마루 부근의 완만한 비탈길 위에서 바위를 (…) 굴리는 시시포스"에 비유하며 "우리는 바위가 산꼭대기 아래로 굴러내려 가 시시포스에게서 멀어지는 것을 절대 원하지 않는다"라고 말했다.용골자리 성운을 바라본 허블 우주 망원경의 두 가지 시각을 비교한 이미지. 위는 가시광선 이미지이고 아래는 적외선 이미지이다. 적외선에서 훨씬 많은 별들이 보인다.
제임스 웹 우주 망원경 최초의 이미지. 2022년 7월 12일 공개.
https://www.youtube.com/watch?v=2rqgrxHykU4
반응형'인터넷시대와 4차산업' 카테고리의 다른 글
로봇이 내리는 커피?… 어떤 맛? - 잉치키 잉치키 로봇 (20) 2023.08.17 바이락타르 TB2 무인기에 이어 TB3 생산! (22) 2023.08.08 ASIMO(アシモ) - 세계 최초의 2족 보행 로봇 (14) 2023.07.26 태그리스(Tagless) - 버스와 지하철 그냥 타도 될까요? (6) 2023.07.24 AI로봇, 창조자에게 반항할 것이냐? 물음에 짜증스러운 표정 (6) 2023.07.10